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Why use laser induced fluorescence ?

Spectroscopic method

e Non intrusive

* Low detectivity threshold : only a few ppm of fluorescent species are needed

 Really short response time : ~107° s

Applications

e Gaseous flow : measurement of concentration, temperature, pressure, presence of a specie

* Liquid flow : measurement of concentration, temperature, separate multiphase flows

2/20



Need of a fluorescent dye

Gaseous flow

—— Rh 560
—— FL27
-~ FL
Rh 6G
Rh B
KR
~ Rh640
~—— SRh 640

 Added dyes : Diacetyl, ketones, benzenes

* Natural dyes : OH, NOx (from combustion)

Fluorescence signal (a.u.)

Liguid flow

* Organic dyes : rhodamines, fluoresceins, coumarins (mostly for water or alcohols)

* Aromatic compounds : ketones, benzenes
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What is fluorescence?

Energy

Excited state Laser
3 @532 nm
2 2 CIS : Inter-System Conversions \ \ |
32 1 8 Cl :Internal Conversions 15 ap i ,_\FI— Se\h640 Emission -
§ RV RV : Vibrational Relaxation sor;p Ior}/ \ d “
0 < - ,«'\ '
U 4 SS0
3 08 .7 -
2 > @ ,',/ !
51 S Q 3 v/ ‘.
1 Triplet state D / .
Cl RV S 06~ i
0 3 )
2 ge
T1 D ,
Absorption 1 N K
Fluorescence = 04 i
|-
(@]
Quenching Z 02+ |
3 —4—— v OOy ) \ .
2 0 LT ~s ! L =
0 Z 450 500 550 600 650 700
R | A (nm)
0

Electronic ground state

* Fluorescence is one of the means of transition to a more stable electronic state

e Other meansinclude:
> Vibrating and Rotating conversions
> Quenching
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Laser Induced Fluorescence modeling

Fluorescence

Liquid ’ field LIF principle
+ -
Fluorescent dye -7 - > Detection of the * Mixing with a fluorescent dye
Yy <~d~ﬂ\ —, fluorescence * Excitation using a laser
/ U< —> signaldiy * Measurement of the fluorescence intensity
Collection

dVe ‘ optics

Fluorescence intensity model Absorption coefficient

{ d] K CI dvm/ Quantum yield
— &<
A A > f . \laser — Function of the state of the fluid

(temperature, pressure, mixture)
Dye

concentration Laser intensity ~ Probed volume Different for each dye
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Example of 1c-LIF method : vertical film

T. Xue, S. Zhang
International Journal of Heat and Mass Transfer 126, 2018.

Heating Band
—

High Speed é’;’

Camera /

T (°C)

N

Integrate the full signal of 1 dye (rhodamine B)

Dependency to any geometrical variation
> Limited to flat film
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Difficulty with moving interfaces

Difference in the probe volume dV/.

Fluorescence

Liquid

+ ‘ -7
Fluorescent dye > - _, Detection of the
N ‘<~dﬂ — fluorescence
-~ —> .
/ S —» signaldly,
Collection
dV. optics

The use of fluorescence intensity dI; alone may limit the measurement capacities

I:> Ratiometric method
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Two-color ratiometric method for temperature

Dye mixture used in the two-color measurement
method : FL and SR640 e Signal intensity on Band 1
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Absorption of incident light by the fluorescent dye

Light travelling in a seeded solution is absorbed following a Beer-Lambert law

Detector

Optical collection
I,— 20 _ —C-€1550rh
- system Ilas (h) — IO . e laser

Fluorescent
solution

beam
‘ 1 ’ Iy = Kopt,l ' I/l(h) . e~CrEne

1y
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Auto-absorption of fluorescence by a dye

Band 1 Bar|1d 2
|

1 /_\FL l SB\hMO l - SRh640 strongly absorbs both FL and SRh640 emissions
e 0.8 i
S 06 | SRh640 absorption is important on FL spectral band
e
(¢D)
N /
=< 047 ]
% Extra care is needed when choosing the dyes
Z 02" 4 concentrations to limit the influence of absorption

-------------- Bound by the length the light has to travel in the

0 450 500 550 600 650 700 apsorbing media
A (nm) > typically ~10™> mol/L for fluid domain of 1 mm
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The saturation of the fluorescence

When using a pulsed laser, [, becomes really high. Ly | |
I L
f I A : | : Saturated

dIA o \ /// Partially |
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Some dyes lose their dependence to the state of the system, due to the diminishing impact
of ¢, particularly for rhodamines
(e.g. to temperature as a result of increased quenching)

The choice of dye is reduced for LIF imaging when using high power laser source
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Influence of laser intensity saturation on the dyes : loss of sensitivity

Rhodamine B
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Influence of laser intensity saturation on the dyes : no loss

Normalized fluorescence signal

Fluorescein Sulforhodamine 640
e CW laser (linear regime) 1.06
- g Pulsed laser ° _ ] ° PC\1\/ Izsler (linear regime)
E=92m],I I, =3 = T 104 m Pulsed laser
| ( m] laser/ sat ) : gn (E — 92 m]’ [laser/lsat _ 3)
)
. € 1.02+ .
" ot "
a ]
° c 1loe ° .
3 .. L f .... . .
5l a & 098¢ ° o m
o g = u o
om " € m
«
1 = 2 0.96¢ . =
]
‘ ‘ ‘ ‘ 0.94 S
20 30 40 >0 60 70 80 90 25 30 35 40 45 50 55 60 65 70
T(°C) T(°C)
[ I.,:(T) = cst ¢(T) = cst ]

13/20



Example of LIF temperature imaging : falling film

Camera - objective
assembly

Capillary waves Crest Tail
%@\@MJWE
Objective

Laser '

sheet

Long-pass filter
[>640] nm

Notch filter
532 nm /—

| CCDh 1
/'_

Beam Splitter ~

(R 45%, T 55%) CCD 2

Band-pass filter
[540 - 560] nm

AL

620 660 700

500 540

14/20



Pixel correspondence and temperature calculation
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Example of 2¢-LIF temperature imaging : falling film

R. Collignon et al. Capillary waves Crest Tail

Experiments in Fluids 62, 2021. W@
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Example of 2¢c-LIF temperature imaging : drop impact

W. Chaze et al. Neddle
Experiments in Fluids 58, 2017. Pending
drop /' Band-pass
% Drop filters
Pulsed laser / \
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Example of 2¢-LIF mixing imaging : turbulent jet

Fluorescein is a dye whose fluorescent emission depends on the pH of the solvent

Signal de fluorescence (a.u.)
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Example of 2¢-LIF mixing imaging : turbulent jet

T. Lacassagne et al.
Experiments in Fluids 59, 2017.
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Conclusion and perspectives

e Short introduction on LIF and it’s potential for imaging scalar quantities
* Awareness of some limitations for the technique (dye selection, spectral conflicts, laser power)

A few examples of research applications
Liguid depth [mm]

020 2T

0.1 0.3 0.5 0.7 0.9 1.1 1.3

4

Kerosene distribution in a combustion chamber Thickness of a vertical jet stream
R.D. Lockett and D.A. Greenhalgh, ILASS 2010 A. Roth et al., International Journal of Multiphase Flow, 2021

» Extend LIF and PLIF imaging to 3 colors to study coupled heat and mass transfer
Temperature and LiBr concentration for falling film evaporators
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