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Hervé HENRY, Raphaël ZANELLA, György TEGZE

Physique de la Matière Condensée, École Polytechnique, CNRS, Palaiseau
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Motivations
Recent adavances in visualisation techniques and computing.

X-Ray Tomography
Real time observation of 3D struc-
tures. D. Bouttes, E. Gouillart, D
Vandembrouq

Real space imaging and description of geometrical complexity ?
Effect of the symmetry breaking between the phases in the case of
hydrodynamic coarsenning ?
Practical importance : relationship between microstructure and
properties
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Phase diagramm
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Thermodynamics and spatial organisation

Cahn-Hilliard free energy

F =

∫
ε

2
|∇c|2 + A(c2(c − 1)2)

A>0. Initial composition c0 = 0.5. Double tangent is at c = 0, 1.

Initial pattern :

Long wavelength favored due to energy
Diffusion favors short wavelength.

initial pattern with short wavelength
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Self similar coarsenning

Mechanism that decreases surface energy :

T=40000

T=2000 T=20000

T=80000

When l is large : flow dominated.
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The model equations

Cahn Hilliard

F =

∫
ε

2
|∇c|2 + A(c2(c − 1)2) (1)

∂tC + v.∇c = −div(+M∇µ), µ = +
δF
δc

(2)

Navier Stokes

∂tv +∇ · (v ⊗ v) =
−1

ρ
(∇p + ε∇ · (∇c ⊗∇c)) (3)

+ ∇ ·
(ν(c)

2
(∇v +∇vT )

)
∇ · v = 0 (4)

Motion induced by surface tension.γ. ν(c) = ν1c + (1− c)ν2.
VC = ν1/ν2.
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Numerics

Numerical method

CH : semi implicit, pseudo-spectral.

NS : semi implicit, pseudo spectral.

divv = 0 : projection on a divergence free field.

details

mpi-openmp. (Good scaling)

5123 to 10243 grids.

curvatures computed with specific post-processing.

simulations performed at IDRIS (Turing/ Blue Gene Q)
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dimensionless numbers and scaling

A characteristic length l .
Characteristic velocity : balances surface tension and viscosity :
v0 = γ/(νρ) Siggia 1979

Dimensionless numbers

Peclet number Pe = lv0/D. Relative importance of diffusive
transport vs advection.

Reynolds number Re = l/l0 with l0 = ν2/γρ. Relative
importance of inertial forces vs viscosity.

Non constant during the evolution

What happens to a microstructure when Pe >> 1, Re << 1 ?



Introduction Equations, numerics and method φ = 0.5, VC 6= 1 φ 6= 0.5

Isoviscous case : inertial effects
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Siggia’s prediction :
Constant growth rate of l
v0 ∝ γ/(νρ)
Numerical observation
Valid for Re < 1.
Inertial effects are visible earlier
than previously estimated (Siggia
79, Kendon 2000).
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Viscosity contrast effects on the structure

No visible (to the naked eye) effects (not as in experiments) : too
small values of VC ?
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Self similarity is preserved.

Visible effects on the PDFs.

Symmetry breaking
Significant κ1κ2 > 0
region.
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Viscosity contrast and growth velocity
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Visible morphological changes (φ = 0.7)

From left to right : decreasing viscoity of minorty phase.

note : bicontinuous structures are relatively easy to obtain up to
φ = 0.75.
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Self similar cases

φ = 0.55
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Topological changes. Examples. ϕ = 0.735

(a) (b)

(c) (d)
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Effects on the PDF ϕ = 0.735

Top : Minorirty (less viscous). Bottom : Minority more viscous.
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Measure the connectivity of the microstructrure

Compute its conductance G. The conductivity is

G (c) = 1 if c > 0.5 ,ε << 1 otherwise. (5)

 solve

0 = ∇.(G (c)∇V ) with V (z = L) = 1, V (z = 0) = 0 (6)

Then the flux (independant of z0)is a measure of the connectivity.

G =

∫
z=z0

dx dy G (c)∇V (7)

Here length scaling by L so that ϕ = 1 G = 1
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G vs ϕ and VC
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Conclusions

Numerical study of the viscous coarsenning

Confirmation of the self-similar regime predicted by Siggia
(1979) in an assymetric case.

Description of morphological changes induced by symmetry
braking.

For a given φ transition from self-similar regime to matrix and
inclusions.

Effective viscosity for mixtures of different mechanical
properties.
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