

Effect of viscosity contrast on hydrodynamic coarsenning

Hervé HENRY, Raphaël ZANELLA, György TEGZE

Physique de la Matière Condensée, École Polytechnique, CNRS, Palaiseau Wigner Institute, Budapest

7 juin 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	00000000

Motivations Recent adavances in visualisation techniques and computing.

X-Ray Tomography Real time observation of 3D structures. D. Bouttes, E. Gouillart, D Vandembrouq

Real space imaging and description of geometrical complexity? Effect of the symmetry breaking between the phases in the case of hydrodynamic coarsenning?

Practical importance : relationship between microstructure and properties

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi eq 0.5$
0000	00000	000	00000000

2 Equations, numerics and method

$$\bigcirc \phi = 0.5, VC \neq 1$$

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
0000	00000	000	00000000

Phase diagramm

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- spontaneous phase separation.
- no information about the spatial organization.

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	00000000

Thermodynamics and spatial organisation

Cahn-Hilliard free energy

$$\mathcal{F} = \int rac{arepsilon}{2} |
abla c|^2 + A(c^2(c-1)^2)$$

A>0. Initial composition $c_0 = 0.5$. Double tangent is at c = 0, 1.

Initial pattern :

Long wavelength favored due to energy Diffusion favors short wavelength.

initial pattern with short wavelength

Introduction 00000	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
-			

Self similar coarsenning

Mechanism that decreases surface energy :

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

When *I* is large : flow dominated.

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	•0000	000	00000000

2 Equations, numerics and method

$$\bigcirc \phi = 0.5, VC \neq 1$$

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	0000	000	00000000

The model equations

Cahn Hilliard

$$\mathcal{F} = \int \frac{\varepsilon}{2} |\nabla c|^2 + A(c^2(c-1)^2) \tag{1}$$

$$\partial_t C + \mathbf{v} \cdot \nabla c = -\operatorname{div}(+M\nabla\mu), \quad \mu = +\frac{\delta\mathcal{F}}{\delta c}$$
 (2)

Navier Stokes

$$\partial_{t} \mathbf{v} + \nabla \cdot (\mathbf{v} \otimes \mathbf{v}) = \frac{-1}{\rho} (\nabla \rho + \epsilon \nabla \cdot (\nabla c \otimes \nabla c)) \quad (3)$$
$$+ \nabla \cdot \left(\frac{\nu_{(c)}}{2} (\nabla \mathbf{v} + \nabla \mathbf{v}^{T})\right)$$
$$\nabla \cdot \mathbf{v} = 0 \quad (4)$$

Motion induced by surface tension. γ . $\nu(c) = \nu_1 c + (1 - c)\nu_2$. $VC = \nu_1/\nu_2$.

Introduction	Equations, numerics and method	ϕ = 0.5, VC \neq 1	$\phi eq 0.5$
00000	00000	000	00000000

Numerics

Numerical method

- CH : semi implicit, pseudo-spectral.
- NS : semi implicit, pseudo spectral.
- divv = 0 : projection on a divergence free field.

details

- mpi-openmp. (Good scaling)
- 512^3 to 1024^3 grids.
- curvatures computed with specific post-processing.
- simulations performed at IDRIS (Turing/ Blue Gene Q)

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	00000000

dimensionless numbers and scaling

A characteristic length *I*.

Characteristic velocity : balances surface tension and viscosity : $v_0 = \gamma/(\nu \rho)$ Siggia 1979

Dimensionless numbers

- Peclet number $Pe = lv_0/D$. Relative importance of diffusive transport vs advection.
- Reynolds number $Re = I/I_0$ with $I_0 = \nu^2/\gamma\rho$. Relative importance of inertial forces vs viscosity.

Non constant during the evolution

What happens to a microstructure when Pe >> 1, Re << 1?

Equations, numerics and method

 $\phi = 0.5, VC \neq 1$

 $\substack{\phi \neq 0.5 \\ 0 0 0 0 0 0 0 0 0}$

Isoviscous case : inertial effects

Siggia's prediction : Constant growth rate of *I* $v_0 \propto \gamma/(\nu\rho)$ Numerical observation Valid for Re < 1. Inertial effects are visible earlier than previously estimated (Siggia 79, Kendon 2000).

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	•00	00000000

2 Equations, numerics and method

3
$$\phi = 0.5$$
, $VC \neq 1$

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	00000000

Viscosity contrast effects on the structure

No visible (to the naked eye) effects (not as in experiments) : too small values of VC?

- Self similarity is preserved.
- Visible effects on the PDFs.
 - Symmetry breaking
 - Significant $\kappa_1 \kappa_2 > 0$ region.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Equations, numerics and method	ϕ = 0.5, VC \neq 1	$\phi eq 0.5$
00000	00000	000	00000000

Viscosity contrast and growth velocity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	•0000000

2 Equations, numerics and method

3
$$\phi = 0.5, VC \neq 1$$

Introduction 00000	Equations, numerics and method	$\phi=$ 0.5, $VC eq 1$	$\phi eq 0.5$
Visible morph	ological changes	$(\phi = 0.7)$	

From left to right : decreasing viscoity of minorty phase.

note : bicontinuous structures are relatively easy to obtain up to $\phi = 0.75.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	00000000

Self similar cases

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	
00000	

Equations, numerics and method 00000

 $\phi = 0.5, VC \neq 1$

 $\substack{\phi \neq 0.5 \\ \circ \circ \circ \circ \circ \circ \circ \circ}$

Topological changes. Examples. $\varphi = 0.735$

Introduction 00000	Equations, nume	erics and method	$\phi = 0.5, VC \neq 1$	$\phi eq 0.5$
F (C)		0 705		

Effects on the PDF $\varphi = 0.735$

Top : Minorirty (less viscous). Bottom : Minority more viscous.

Minority phase the more viscous ~> Self similarity

Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi \neq 0.5$
00000	00000	000	000000000

Measure the connectivity of the microstructrure

Compute its conductance \mathcal{G} . The conductivity is

$$G(c) = 1$$
 if $c > 0.5$, $\varepsilon << 1$ otherwise. (5)

 \rightsquigarrow solve

$$0 = \nabla (G(c)\nabla V)$$
 with $V(z = L) = 1$, $V(z = 0) = 0$ (6)

Then the flux (independant of z_0) is a measure of the connectivity.

$$\mathcal{G} = \int_{z=z_0} dx \, dy \, G(c) \nabla V \tag{7}$$

Here length scaling by L so that $\varphi=1\rightsquigarrow \mathcal{G}=1$

・ロト・西ト・山田・山田・山口・

~	1.1.10		
00000	00000	000	00000000
Introduction	Equations, numerics and method	$\phi = 0.5, VC \neq 1$	$\phi eq 0.5$

G vs φ and VC

・ロト ・四ト ・ヨト ・ヨト

Introduction 00000	Equations, numerics and method	$\phi=$ 0.5, $VC \neq 1$	$\phi eq 0.5$
Conclusions			

- Numerical study of the viscous coarsenning
- Confirmation of the self-similar regime predicted by Siggia (1979) in an assymetric case.
- Description of morphological changes induced by symmetry braking.
- For a given ϕ transition from self-similar regime to matrix and inclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Effective viscosity for mixtures of different mechanical properties.