

A THERMAL WALL LAW FOR HEAT TRANSFER PREDICTION IN LAMINAR FLOW AT HIGH PRANDTL NUMBER: APPLICATION TO ELECTRICAL MACHINES

PhD student

M. Adrien Ingles (presenter) IFP Energies nouvelles, 1-4 Av. du Bois Preau, 92852 Rueil-Malmaison, France

PhD advisor

Prof. Franck Nicoud IMAG, Université de Montpellier, CNRS, Montpellier, France Institut Universitaire de France, Paris, France

Adèle Poubeau, PhD Guillaume Vinay, PhD IFP Energies nouvelles, 1-4 Av. du Bois Préau, 92852 Rueil-Malmaison, France

INDUSTRIAL CONTEXT

Industrial context of electrical motors for electric vehicles

• Local cooling of the **end-windings** through **oil jets**

• Physics of the oil jets cooling :

Liquid film formation

Laminar flows [1] $(Re_{jet} < 1000)$

Complex phenomena: [2,3]

- Cross-air flow, Splashing
- Liquid film formation with various dynamic behavior, liquid film instabilities
- Surface wetting prediction, complex surfaces
- High Prandtl number liquid cooling

Complex phenomena involved

CONTEXT & OBJECTIVE OF THE PRESENT WORK

Specifically addressed in the present work : numerical simulation of high Prandtl number liquid cooling

- 100 < Pr < 400
- Thin thermal boundary layer
- Multi-physical scales in one simulation: high computational cost

Boundary layers illustration (Pr >> 1)

• Objective:

Propose a **thermal wall law** that eliminate the need to finely mesh the thermal boundary layer and thus reduce computational cost.

HIGH PRANDTL NUMBER FLUID FLOW CHARACTERISTIC

• Prandtl number definition: $Pr = \frac{\nu}{\alpha}$

- \mathcal{V} : Momentum diffusivity
- lpha : Thermal diffusivity

• P_r >> 1 :

- $\delta >> \delta_t$
- Velocity in the linear part of the velocity profile

 $\bullet P_r \rightarrow \infty$:

• Temperature field solved by Lévêque analytically [2]

Boundary layer development on a flat plate (Pr = 100): Scaled velocity and Temperature profile solved by Blasius [1]

SUMMARY OF THE PRESENTED WORK

- 1: Propose a thermal wall law model based on Lévêque theory
- 2: Assess the law on single-phase flow verifying wall law hypothesis

• 3: Assess the law on academic impinging jet configuration

Description of the model:

 $q_w = f(T_1, T_w, T_\infty, y_1, k_1)$

Hypothesis behind the model:

The common b.l. hypothesis:

- Stationary, 2D, incompressible flow
- Flat wall
- Uniform properties and uni. mean velocity outside the b.l.
- Low viscous dissipation
- $\bigcirc \ \frac{\partial}{\partial y} >> \frac{\partial}{\partial x}$

Specific hypothesis for the Lévêque theory:

- $T_w = uniform$
- v = 0 (velocity y-component null)
- $u(y) \sim y$, uniform slope along the wall

Description of the model:

$$q_w = f(T_1, T_w, T_\infty, y_1, k_1)$$

> Hypothesis behind the model:

The common b.l. hypothesis:

- Stationary, 2D, incompressible flow
- Flat wall
- Uniform properties and uni. mean velocity outside the b.l.
- Low viscous dissipation
- $\bigcirc \ \frac{\partial}{\partial y} >> \frac{\partial}{\partial x}$

Specific hypothesis for the Lévêque theory:

- $T_w = uniform$
- v = 0 (velocity y-component null)
- $u(y) \sim y$, uniform slope along the wall

- Model based on Lévêque theory:
- Lévêque solves energy equation:

$$u\frac{dT}{dx} = \alpha \frac{d^2T}{dy^2}$$
 with $\begin{cases} T(y=0) = T_w \\ T(y \to \infty) = T_\infty \\ \frac{\partial T}{\partial y}(y \to \infty) = 0 \end{cases}$

• T° profile remain self-similar (consistent with experimentations):

• Thermal wall law using near-wall cell information:

 $q_w = f(T_1, T_w, T_\infty, y_1, k_1)$

• Thermal wall law using analytical results from Lévêque theory:

- 1. self-similar local temperature profile $T^*(y^*)$ with $y^* = \frac{y}{\delta_t}$ and $T^* = \frac{T_w T}{T_w T_\infty}$
- 2. Relation between q_w and δ_t : $q_w = k_1(T_w T_\infty) 1.593 \ \delta_t^{-1}$

• Thermal wall law using analytical results from Lévêque theory:

- 1. Autosimilar local temperature profile $T^*(y^*)$ with $y^* = \frac{y}{\delta_t}$ and $T^* = \frac{T_w T}{T_w T_\infty}$
- 2. Relation between q_w and δ_t : $q_w = k_1(T_w T_\infty) 1.593 \ \delta_t^{-1}$

• Thermal wall law using analytical results from Lévêque theory:

- 1. Autosimilar local temperature profile $T^*(y^*)$ with $y^* = \frac{y}{\delta_t}$ and $T^* = \frac{T_w T}{T_w T_\infty}$
- 2. Relation between q_w and δ_t : $q_w = k_1(T_w T_\infty) 1.593 \ \delta_t^{-1}$

In the finite volume approach, the convective flux P_n is expressed numerically in function of the cells' temperatures. For instance, with an upstream scheme we have:

$$P_n = 2y_n u_n \rho_n \ C_{p_n} T_n$$

• The exact analytical calculation is expressed as:

$$P_n = \int_0^{2y_n} \rho \ C_p \ T \ u(y) dy$$

In the finite volume approach T_n must be equal to a "flow" temperature to estimate P_n correctly:

$$T_n = \frac{\int_0^{2y_n} \rho \ C_p \ T \ u(y)dy}{2y_n u_n \rho_n \ C_p \ n}$$

if we suppose ho, C_p uniform and:

$$ho_n=
ho$$

 $C_{p_n}=C_p$
Plus linear velocity profile: $u_n=\int_0^{2y_1}u(y)dy$

ASSESS THERMAL WALL LAW

ON SINGLE-PHASE FLOW VERIFYING WALL LAW HYPOTHESIS

➢ <u>Numerical set-up:</u>

Uniform cartesian mesh

➢ <u>Numerical set-up:</u>

 \bigcirc Uniform cartesian mesh

Number of cells in thermal boundary layer (n_{δ_t})

Wall heat flux error with & without thermal wall

5

➢ <u>Numerical set-up:</u>

Uniform cartesian mesh

Wall heat flux error with & without thermal wall law: 20%0%0%

• Impact of the wall law on q_w prediction:

- Strong improvement for coarse mesh ($n_{\delta t} < 1.5$)
- Error < 10% for more refined mesh

 \mathbf{O} **n**_{δ} = **2**: error on T₁ leads to q_w error

<u>Temperature profile for $n_{\delta} = 0.6$ </u>

17

<u>Temperature profile for $n_{\delta} = 2$ </u>

ASSESS THERMAL WALL LAW ON TWO-PHASE FLOW OUTSIDE THE WALL LAW HYPOTHESIS :

IMPINGING JET CONFIGURATION

IMPINGING JET CONFIGURATION FROM [1] "POUBEAU ET AL. 2023"

• Modelling of a laminar impinging jet on a heated flat wall:

- ➢ Using numerical setup from [1]
 - additional assumption of a uniform wall temperature (T_w)
 - VoF with HRIC scheme employed
 - validated with experimental data from [2]

IMPINGING JET CONFIGURATION FROM [1] "POUBEAU ET AL. 2023"

• Modelling of a laminar impinging jet on a heated flat wall:

- ➢ Using numerical setup from [1]
 - additional assumption of a uniform wall temperature (T_w)
 - VoF with HRIC scheme employed
 - validated with experimental data from [2]

• Operating conditions and grids:

➤ Uniform viscosity assumption
$$\mu \neq \mu(T)$$
➤ $Re_{jet} = \frac{u_{jet}d_{jet}}{\nu} = 900$

- 2 Prandtl investigated:
 - Pr = 160
 - Pr = 1000
- 2 meshes for each Prandtl
 - one thin mesh "DNS"
 - one under resolved mesh for $\,\delta_t$

• 2 wall law's assumptions not respected:

- 1. Linear velocity profile
- 2. Uniform shear stress over the wall

• Significant improvement of the local wall heat flux prediction with the thermal wall law

Good prediction also in the stagnation zone (r/d < 1)

• Significant improvement of the local wall heat flux prediction with the thermal wall law

Good prediction also in the stagnation zone (r/d < 1)

ies les

• Significant improvement of the local wall heat flux prediction with the thermal wall law

Good prediction also in the stagnation zone (r/d < 1)

• Significant reduction in computational time for similar thermal wall heat flux prediction:

- 70 % computational time (Pr = 158)
- 90 % computational time (Pr = 1000)

165

les

ASSESS THERMAL WALL LAW ON TWO-PHASE FLOW OUTSIDE THE WALL LAW HYPOTHESIS:

IMPINGING JET CONFIGURATION WITH TEMPERATURE DEPENDENT VISCOSITY

WALL LAW ASSESSMENT ON IMPINGING JET WITH **TEMPERATURE-**DEPENDENT VISCOSITY

Real cases (Re = 320, Pr = 111) show velocity slope variation across the thermal b.l.

• Sensitivity to dynamic viscosity variation across thermal b.l.

Thin mesh across the thermal b.l. is necessary to correctly calculate the velocity field

- It is not possible to obtain satisfying results for coarse mesh with current thermal wall law.
 - The velocity field needs to be correctly calculated

CONCLUSIONS

• A thermal wall law was developed to address high Prandtl liquid, laminar flows.

- Model based on Lévêque theory
- Predict heat flux from first off-wall cells variables, imposing wall Temperature.

• Implemented in a CFD code (CONVERGE v3.2.4) using the finite volume method.

• First results:

- Significant improvements for calculate wall heat flux with a coarse mesh assuming model assumptions are met:
 - With 0.5 cells in thermal b.l.: reduced q_w error from 40% to 1%.
 - q_w error less than 10 %
- Application to impinging jet simulations with uniform viscosity :
 - significant reduction of wall heat flux error with a coarse mesh

Perspectives:

- Reduction q_w error for thinner meshes by modify heat flux between first and second cell.
- Test case with thermal b.l. inside non-linear profile (Blasius velocity profile)
- Test case with a change in flow direction (reversal of velocity gradient)
- Addressing jet impinging cases with temperature-dependent viscosity.
- Addressing scenarios that are more representative of industrial applications.

jet impact simulation on realistic endwinding geometry [1]

APPENDIX A: q_W CALCULATION METHOD IN CONVERGE

 \bigcirc q_w calculated with the Fick's law

$igodoldsymbol{q}_w$ error due to:

- Linear approximation for small \underline{n}_{δ}
- Error on cell temperature for larger \underline{n}_{δ}

<u>Temperature profile for $n_{\delta} = 0.6$ </u>

<u>Temperature profile for $n_{\delta} = 2$ </u>

APPENDIX B: T1 VARIATION ALONG THE WALL

- Without model:
 - T₁ tends to be equal to the local temperature at the center of cell 1 for n_δ > 2
- with model:
 - T₁ tends to be equal to the flow temperature of cell 1
 - q_w error comes from the error on T₁

$T_1 * VS n_{\delta} & comparison with theoretical temperatures$

➢ <u>Numerical set-up:</u>

Uniform cartesian mesh

APPENDIX F1: ADDITIONS TO SINGLE-PHASE FLOW IN 2D POISEUILLE FLOW

➢ <u>Numerical set-up:</u>

Thermal boundary layer in Poiseuille velocity profile with Re = 50:

• "Mesh criteria" $\frac{2y_1}{H}$ is used to characterise the sensitivity of the wall law to the non-linearity of the velocity profile:

 Higher mesh criteria -> higher impact of the non-linearity on the near wall cell temperature

FLOW

➢ <u>Numerical set-up:</u>

Uniform cartesian mesh

Impact of a non-linear velocity profile on q_w prediction with 3 cells along Y direction

Wall law still relevant with Poiseuille profile

NUMERICAL SETUP VALIDATION

- Validation using mean Nusselt number over the wall
- Validation performed for different Re and Pr numbers (defined at the film temperature)
- Good consistency between numerical and experimental results

