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The Plateau-Rayleigh instability can be observed on wetted wires where, to
minimize its surface, water organizes itself as regularly spaced droplets...
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Proton Exchange Membrane Fuel Cell (PEMFC)

Fuel cells convert hydrogen into electricity

4! Not to scale.

How to evacuate water ?
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Objectives

Two-phase flow regimes: films and plugs

Film flow Plug flow

Objectives

1 Is the lubrication approach enough to model the plug formation
phenomenon ?

2 If not, what is the role played by inertia ?

Tool: TRUST/TrioCFD - Front-Tracking / Analytical models
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Lubrication model

Lubrication theory for a water film in presence of a flow Q0

2D Axisymmetric model

Water vapour

Liquid water

I Geometry: 0.5 mm-radius
axisymmetric pipe.

I Incompressible and laminar
flows.

I Gravity, interfacial phase
change and thermal effects
are neglected.

Our lubrication model

−2πRi
∂h
∂t

= Q0α
∂h
∂z

+ σ
∂

∂z

[
β

(
∂3h
∂z3

+
∂h
∂z

1
R2

i

)]
(1)

with α(h) and β(h).
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DNS vs Lubrication
Comparison between Front-Tracking and Lubrication theory:

Q0 = 0, ε = h0/R0 = 0.1

IAgreement of Front-Tracking simulations
with lubrication theory.

IStable collars are formed, as expected
by [Gauglitz and Radke, 1988].
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DNS vs Lubrication
Comparison between Front-Tracking and Lubrication theory:

Q0 = 0, ε = h0/R0 = 0.15

IPlugs are formed, as predicted by
[Gauglitz and Radke, 1988].

IPlug formation is slower in Front-Tracking
simulations

→ inertia.

I Linear stability models accounting for
inertia are developed.
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Linear stability analysis: effect of inertia

Effect of wavenumber x = kRi on the instability growth rate ω̂ = ω µl Ri
σ

Lubrication & thin film : ω̂ = ε3

3 x2 (1− x2)
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ε =0.4

Lubrication & thin film

Analytical models

I The existence of a viscous (ε ≤ 0.1) and an inertial (ε ≥ 0.2) regimes
is evidenced.

I DNS perfectly agrees with the complete model (inertia+viscosity).

GDR TransInter II - 23-25 septembre 2024 - Matthieu Rykner 23-25/09/2024 7/17



Linear stability analysis: effect of inertia

Effect of wavenumber x = kRi on the instability growth rate ω̂ = ω µl Ri
σ

Lubrication & thin film : ω̂ = ε3

3 x2 (1− x2)

0 0.25 0.5 0.75 1

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3ω̂
ε3

Viscosity only (~∇µ~∇~v)

0 0.25 0.5 0.75 1

x

Inertia only (ρ∂t~v)

0 0.25 0.5 0.75 1

x

Viscosity and inertia

ε =0.1

ε =0.2

ε =0.3

ε =0.4

Lubrication & thin film

Analytical models

I The existence of a viscous (ε ≤ 0.1) and an inertial (ε ≥ 0.2) regimes
is evidenced.

I DNS perfectly agrees with the complete model (inertia+viscosity).

GDR TransInter II - 23-25 septembre 2024 - Matthieu Rykner 23-25/09/2024 7/17



Linear stability analysis: effect of inertia

Effect of wavenumber x = kRi on the instability growth rate ω̂ = ω µl Ri
σ

Lubrication & thin film : ω̂ = ε3

3 x2 (1− x2)

0 0.25 0.5 0.75 1

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3ω̂
ε3

Viscosity only (~∇µ~∇~v)

0 0.25 0.5 0.75 1

x

Inertia only (ρ∂t~v)

0 0.25 0.5 0.75 1

x

Viscosity and inertia

ε =0.1

ε =0.2

ε =0.3

ε =0.4

Lubrication & thin film

Analytical models

DNS

I The existence of a viscous (ε ≤ 0.1) and an inertial (ε ≥ 0.2) regimes
is evidenced.

I DNS perfectly agrees with the complete model (inertia+viscosity).

GDR TransInter II - 23-25 septembre 2024 - Matthieu Rykner 23-25/09/2024 7/17



Linear stability analysis: effect of inertia

Maximum growth rate as a function of ε

I The existence of a viscous (ε ≤ 0.1) and an inertial (ε ≥ 0.2) regimes
is evidenced.

I Inertial and viscous effects are not perfectly independent.
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Effect of the core vapour
Effect of the viscosity ratio m =

µg
µl

without inertia
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I The more viscous is the core fluid, the slower is the instability.
I Same for density: the denser the core fluid, the slower the instability.

I In the liquid/vapour water case, the vapour influence is negligible
without vapour flow
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I The more viscous is the core fluid, the slower is the instability.
I Same for density: the denser the core fluid, the slower the instability.
I In the liquid/vapour water case, the vapour influence is negligible

without vapour flow
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Contribution maps: linear regime

(a) (b) (c)

(d) (e) (f)

a-c : thin film (ε = 0.1) - d-f : thick film (ε = 0.2).

I Viscosity dominates the thin film regime.
I Viscosity and inertia are spatially separated in the thick film regime.
→ Change in the nature of the kinetic energy transport.
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Contribution maps: plug formation (1/2)

(a) (b) (c)

(d) (e) (f)

thick film (ε = 0.2) - a-c : 18 ms - d-f : 19 ms - g-h : 20 ms.

I Inertia and convection dominates the behaviour right before occlusion.
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Contribution maps: plug formation (2/2)

(g) (h) (i)

I Generation of capillary waves after occlusion.
→ dissipated by viscosity.
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Plug formation and capillary waves (1/2)
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Plug formation and capillary waves (2/2)
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Conclusion

I Existence of a viscous and an inertial regimes of the Plateau-Rayleigh
instability.

I Inertia is critical to the plug formation in liquid/vapour water systems.
I What happens with an external flow Q0 ?
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Presence of air flow - permanent regime

Qg = 0.8 cm3,
Ql = 0.4 mm3,

ε = h0/R0 = 0.06

IObtention of a permanent regime.

ISame flow rates and boundary conditions,
but distinct initial conditions
→ the same regime is observed.
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Thank you for your attention



Appendix: DNS validation (1/3)

Time and mesh convergence analysis
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Figure 1: Color of the point = timestep.
Stars and plain line = smaller timestep.
Dashed line = mesh and timestep finally used (locally refined).
Colored area = 1% gap to converged value.
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Appendix: DNS validation (2/3)

Evolution of the maximal amplitude with respect to
dimensionless time

(a) (b)

I Same evolution as [Gauglitz and Radke, 1988]. Same critical ε between
collars and plugs.



Appendix: DNS validation (3/3)
Velocity fields around plug formation

(d) t=14.94

(b) t=14.86

(c) t=14.90

(a) t=14.82

I Similar results as
[Bian et al., 2010, Tai et al., 2011, Romanò et al., 2019].



Appendix: Analytical models (1/4)

I Expression of velocities with a current function ψ to respect mass
conservation:

vr =
1
r
∂ψ

∂z
and vz = −1

r
∂ψ

∂r
. (2)

I Navier-Stokes equations transformed to:(
D − 1

ν

∂

∂t

)
Dψ = 0, (3)

with D =
∂2

∂r 2 −
1
r
∂

∂r
+

∂2

∂z2 .

I In the case with viscosity and inertia,

ψg = [Cg I1(kr) + Dg I1(kgr)] r exp(iωt + ikz),

ψl = [AlK1(kr) + BlK1(kl r) + Cl I1(kr) + Dl I1(kl r)] r exp(iωt + ikz),

with k2
l,g = k2 + iω/νl,g



Appendix: Analytical models (2/4)

I Six boundary conditions converted into six equations to give the six
coefficients.

I Identical to finding ω̂ such that detM = 0 with

M =



0 0 K1(ax) K1(axl ) I1(ax) I1(axl )
0 0 −K0(ax) − xl

x K0(axl ) I0(ax) xl
x I0(axl )

I1(x) I1(xg) −K1(x) −K1(xl ) −I1(x) −I1(xl )

I0(x)
xg
x I0(xg) K0(x)

xl
x K0(xl ) −I0(x) − xl

x I0(xl )

(m − 1)I1(x)
[
(m − 1)− ω̂Jg

2x2

]
I1(xg) 0 ω̂Jl

2x2 K1(xl ) 0 ω̂Jl
2x2 I1(xl )

F ′
1 F ′

2 ω̂Jl K0(x) 0 −ω̂Jl I0(x) 0


with:

F ′
1 = 2(1−m)x2I′1(x) + ω̂Jg I0(x) + x

x2 − 1
ω̂

I1(x)

F ′
2 = 2(1−m)xgxI′1(xg) + x

x2 − 1
ω̂

I1(xg)



Appendix: Analytical models (3/4)

I Similarly, if only viscosity is considered, one wants to find ω̂ such that
detM = 0 with

M =


0 0 K1(ax) axK0(ax) I1(ax) axI0(ax)
0 0 −K0(ax) fk (ax) I0(ax) fi (ax)

I1(x) xI0(x) −K1(x) −xK0(x) −I1(x) −xI0(x)
I0(x) fi (x) K0(x) −fk (x) −I0(x) −fi (x)

(m − 1)I1(x) mI1(x) + (m − 1)xI0(x) 0 K1(x) 0 −I1(x)
G′

1 G′
2 K1(x) 0 I1(x) 0


with:

fk (x) = 2K0(x)− xK1(x),

fi (x) = 2I0(x) + xI1(x),

G′
1 = (1−m)xI0(x) + (m − 2)I1(x) +

x2 − 1
2ω̂

I1(x),

G′
2 = (1−m)x2I1(x) + x

x2 − 1
2ω̂

I0(x).



Appendix: Analytical models (4/4)

I If only inertia is considered:

M =

 0 K1(ax) I1(ax)
I1(x) −K1(x) −I1(x)
F ′

1 ω̂Jl K0(x) −ω̂Jl I0(x)


with F ′

1 = x
x2 − 1
ω̂

I1(x) + ω̂Jg I0(x)



Appendix: Contribution maps for collar formation

(a) (b) (c)

(d) (e) (f)

thin film (ε = 0.1) - a-c : 100 ms - d-f : 300 ms

I Inertia plays no role neither on the formation nor on the motion of
collars.

I A lubrication approach is enough to describe thin film evolution.



Appendix: imposed air flow

Permanent regime:

Qg = 0.8 cm3,
Ql = 0.4 mm3,

ε = h0/R0 = 0.06

IObtention of a permanent regime.

ISame flow rates and boundary conditions,
but distinct initial conditions
→ the same regime is observed.
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