ISOS TRUST

The key role of inertia in the Plateau-Rayleigh instability for liquid-vapour water system GDR TransInter II

23-25 septembre 2024

Cea

M. Rykner^{1,2} E. Saikali¹, A. Bruneton¹, B. Mathieu³, V. Nikolayev^{2,4}

¹CEA - DES/ISAS/DM2S/SGLS/LCAN, ²Université Paris-Saclay, ³Université Grenoble Alpes, CEA Liten - DEHT/SAMA/LMPS, ⁴CEA - DRF/IRAMIS/SPEC/SPHYNX

The **Plateau-Rayleigh instability** can be observed on wetted wires where, to **minimize its surface**, water organizes itself as regularly spaced **droplets**...

The **Plateau-Rayleigh instability** can be observed on wetted wires where, to **minimize its surface**, water organizes itself as regularly spaced **droplets**...

... but it is also observed on capillaries.

23-25/09/2024

The **Plateau-Rayleigh instability** can be observed on wetted wires where, to **minimize its surface**, water organizes itself as regularly spaced **droplets**...

... but it is also observed on capillaries.

Proton Exchange Membrane Fuel Cell (PEMFC)

Fuel cells convert hydrogen into electricity

ANot to scale.

Proton Exchange Membrane Fuel Cell (PEMFC)

Fuel cells convert hydrogen into electricity

How to evacuate water ?

Two-phase flow regimes: films and plugs

Film flow

Plug flow

Two-phase flow regimes: films and plugs

Objectives

- Is the lubrication approach enough to model the plug formation phenomenon ?
- 2 If not, what is the role played by inertia?

Tool: TRUST/TrioCFD - Front-Tracking / Analytical models

Lubrication model

Lubrication theory for a water film in presence of a flow Q_0 2D Axisymmetric model

- Geometry: 0.5 mm-radius axisymmetric pipe.
- Incompressible and laminar flows.
- Gravity, interfacial phase change and thermal effects are neglected.

Lubrication model

Lubrication theory for a water film in presence of a flow Q_0 2D Axisymmetric model

- Geometry: 0.5 mm-radius axisymmetric pipe.
- Incompressible and laminar flows.
- Gravity, interfacial phase change and thermal effects are neglected.

Our lubrication model

$$-2\pi R_i \frac{\partial h}{\partial t} = Q_0 \alpha \frac{\partial h}{\partial z} + \sigma \frac{\partial}{\partial z} \left[\beta \left(\frac{\partial^3 h}{\partial z^3} + \frac{\partial h}{\partial z} \frac{1}{R_i^2} \right) \right]$$
(1)

with $\alpha(h)$ and $\beta(h)$.

Comparison between Front-Tracking and Lubrication theory:

$$Q_0 = 0, \, \epsilon = h_0/R_0 = 0.1$$

GDR TransInter II - 23-25 septembre 2024 - Matthieu Rykner

** **

Comparison between Front-Tracking and Lubrication theory:

$$Q_0 = 0, \, \epsilon = h_0/R_0 = 0.1$$

Agreement of Front-Tracking simulations with lubrication theory.

Stable collars are formed, as expected by [Gauglitz and Radke, 1988].

W W

Comparison between Front-Tracking and Lubrication theory:

$$Q_0 = 0, \, \epsilon = h_0/R_0 = 0.15$$

0.4

Axial coordinate z/L [-] (L=2cm)

0.6

0.8

1.0

0.2

-0.75

W W

Comparison between Front-Tracking and Lubrication theory:

$$Q_0 = 0, \, \epsilon = h_0/R_0 = 0.15$$

- Plugs are formed, as predicted by [Gauglitz and Radke, 1988].
- Plug formation is slower in Front-Tracking simulations
 inertia.
- Linear stability models accounting for inertia are developed.

Linear stability analysis: effect of inertia

Effect of wavenumber $x = kR_i$ on the instability growth rate $\hat{\omega} = \omega \frac{\mu_i R_i}{\sigma}$

-ubrication & thin film :
$$\hat{\omega} = rac{\epsilon^3}{3} x^2 \left(1 - x^2\right)$$

Linear stability analysis: effect of inertia

Effect of wavenumber $x = kR_i$ on the instability growth rate $\hat{\omega} = \omega \frac{\mu_i R_i}{\sigma}$

VV

Linear stability analysis: effect of inertia

Effect of wavenumber $x = kR_i$ on the instability growth rate $\hat{\omega} = \omega \frac{\mu_i R_i}{\sigma}$

Lubrication & thin film : $\hat{\omega} = \frac{\epsilon^3}{3} x^2 (1 - x^2)$

- The existence of a **viscous** ($\epsilon \le 0.1$) and an **inertial** ($\epsilon \ge 0.2$) regimes is evidenced.
- DNS perfectly agrees with the complete model (inertia+viscosity).

Linear stability analysis: effect of inertia

Maximum growth rate as a function of ϵ

- ► The existence of a viscous (ϵ ≤ 0.1) and an inertial (ϵ ≥ 0.2) regimes is evidenced.
- Inertial and viscous effects are not perfectly independent.

Effect of the core vapour

- The more viscous is the core fluid, the slower is the instability.
- Same for density: the denser the core fluid, the slower the instability.

W V

Effect of the core vapour

Effect of the viscosity ratio $m = \frac{\mu_g}{\mu_i}$ without inertia

- The more viscous is the core fluid, the slower is the instability.
- Same for density: the denser the core fluid, the slower the instability.
- In the liquid/vapour water case, the vapour influence is negligible without vapour flow

Contribution maps: linear regime

a-c : thin film ($\epsilon = 0.1$) - **d-f** : thick film ($\epsilon = 0.2$).

Contribution maps: linear regime

a-c : thin film ($\epsilon = 0.1$) - **d-f** : thick film ($\epsilon = 0.2$).

- Viscosity dominates the thin film regime.
- Viscosity and inertia are spatially separated in the thick film regime. → Change in the nature of the kinetic energy transport.

Contribution maps: plug formation (1/2)

thick film ($\epsilon = 0.2$) - **a-c** : 18 ms - **d-f** : 19 ms - **g-h** : 20 ms.

Contribution maps: plug formation (1/2)

thick film ($\epsilon = 0.2$) - **a-c** : 18 ms - **d-f** : 19 ms - **g-h** : 20 ms.

Inertia and convection dominates the behaviour right before occlusion.

Contribution maps: plug formation (2/2)

Generation of capillary waves after occlusion.

 dissipated by viscosity.

Plug formation and capillary waves (1/2)

GDR TransInter II - 23-25 septembre 2024 - Matthieu Rykner

23-25/09/2024

Plug formation and capillary waves (2/2)

W V

Conclusion

- Existence of a viscous and an inertial regimes of the Plateau-Rayleigh instability.
- Inertia is critical to the plug formation in liquid/vapour water systems.
- ▶ What happens with an external flow *Q*₀ ?

Conclusion

- Existence of a viscous and an inertial regimes of the Plateau-Rayleigh instability.
- Inertia is critical to the plug formation in liquid/vapour water systems.
- What happens with an external flow Q₀ ?

Conclusion

- Existence of a viscous and an inertial regimes of the Plateau-Rayleigh instability.
- Inertia is critical to the plug formation in liquid/vapour water systems.
- What happens with an external flow Q₀ ?

Presence of air flow - permanent regime

$$egin{aligned} Q_g &= 0.8\,{
m cm}^3,\ Q_l &= 0.4\,{
m mm}^3,\ \epsilon &= h_0/R_0 = 0.06 \end{aligned}$$

Presence of air flow - permanent regime

$$egin{aligned} Q_g &= 0.8\,{
m cm}^3,\ Q_l &= 0.4\,{
m mm}^3,\ \epsilon &= h_0/R_0 = 0.06 \end{aligned}$$

- Obtention of a permanent regime.
- Same flow rates and boundary conditions, but distinct initial conditions
 - \rightarrow the same regime is observed.

Cea

ISOS TRUST

Thank you for your attention

Appendix: DNS validation (1/3)

Time and mesh convergence analysis

Figure 1: Color of the point = timestep. Stars and plain line = smaller timestep. Dashed line = mesh and timestep finally used (locally refined). Colored area = 1% gap to converged value.

Appendix: DNS validation (2/3)

Evolution of the maximal amplitude with respect to dimensionless time

Same evolution as [Gauglitz and Radke, 1988]. Same critical e between collars and plugs.

Appendix: DNS validation (3/3)

Velocity fields around plug formation

 Similar results as [Bian et al., 2010, Tai et al., 2011, Romanò et al., 2019].

Appendix: Analytical models (1/4)

Expression of velocities with a current function ψ to respect mass conservation:

$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial z}$$
 and $v_z = -\frac{1}{r} \frac{\partial \psi}{\partial r}$. (2)

Navier-Stokes equations transformed to:

$$\left(D - \frac{1}{\nu} \frac{\partial}{\partial t}\right) D\psi = 0, \tag{3}$$

with
$$D = \frac{\partial^2}{\partial r^2} - \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}$$
.

In the case with viscosity and inertia,

$$\psi_g = [C_g I_1(kr) + D_g I_1(k_g r)] r \exp(i\omega t + ikz),$$

$$\psi_l = [A_l K_1(kr) + B_l K_1(k_l r) + C_l I_1(kr) + D_l I_1(k_l r)] r \exp(i\omega t + ikz),$$

with $k_{l,g}^2 = k^2 + i\omega/\nu_{l,g}$

Appendix: Analytical models (2/4)

- Six boundary conditions converted into six equations to give the six coefficients.
- Identical to finding $\hat{\omega}$ such that det $\mathbf{M} = \mathbf{0}$ with

$$\mathbf{M} = \begin{bmatrix} 0 & 0 & K_1(ax) & K_1(ax_l) & l_1(ax) & l_1(ax_l) \\ 0 & 0 & -K_0(ax) & -\frac{x_l}{x}K_0(ax_l) & l_0(ax) & \frac{x_l}{x}l_0(ax_l) \\ l_1(x) & l_1(x_g) & -K_1(x) & -K_1(x_l) & -l_1(x) & -l_1(x_l) \\ l_0(x) & \frac{x_g}{x}l_0(x_g) & K_0(x) & \frac{x_l}{x}K_0(x_l) & -l_0(x) & -\frac{x_l}{x}l_0(x_l) \\ (m-1)l_1(x) & \left[(m-1) - \frac{\hat{\omega}J_g}{2x^2} \right] l_1(x_g) & 0 & \frac{\hat{\omega}J_l}{2x^2}K_1(x_l) & 0 & \frac{\hat{\omega}J_l}{2x^2}l_1(x_l) \\ F_1' & F_2' & \hat{\omega}J_lK_0(x) & 0 & -\hat{\omega}J_l l_0(x) & 0 \end{bmatrix}$$

with:

$$F'_{1} = 2(1-m)x^{2}l'_{1}(x) + \hat{\omega}J_{g}l_{0}(x) + x\frac{x^{2}-1}{\hat{\omega}}l_{1}(x)$$

$$F'_{2} = 2(1-m)x_{g}xl'_{1}(x_{g}) + x\frac{x^{2}-1}{\hat{\omega}}l_{1}(x_{g})$$

Appendix: Analytical models (3/4)

Similarly, if only viscosity is considered, one wants to find û such that det *M* = 0 with

$$\mathbf{M} = \begin{bmatrix} 0 & 0 & K_1(ax) & axK_0(ax) & l_1(ax) & axl_0(ax) \\ 0 & 0 & -K_0(ax) & f_k(ax) & l_0(ax) & f_i(ax) \\ l_1(x) & xl_0(x) & -K_1(x) & -xK_0(x) & -l_1(x) & -xl_0(x) \\ l_0(x) & f_i(x) & K_0(x) & -f_k(x) & -l_0(x) & -f_i(x) \\ (m-1)l_1(x) & ml_1(x) + (m-1)xl_0(x) & 0 & K_1(x) & 0 & -l_1(x) \\ G'_1 & G'_2 & K_1(x) & 0 & l_1(x) & 0 \end{bmatrix}$$

with:

$$\begin{split} f_k(x) &= 2K_0(x) - xK_1(x), \\ f_l(x) &= 2l_0(x) + xl_1(x), \\ G_1' &= (1-m)xl_0(x) + (m-2)l_1(x) + \frac{x^2-1}{2\hat{\omega}}l_1(x), \\ G_2' &= (1-m)x^2l_1(x) + x\frac{x^2-1}{2\hat{\omega}}l_0(x). \end{split}$$

Appendix: Analytical models (4/4)

If only inertia is considered:

$$\mathbf{M} = \begin{bmatrix} 0 & K_1(ax) & l_1(ax) \\ l_1(x) & -K_1(x) & -l_1(x) \\ F'_1 & \hat{\omega} J_l K_0(x) & -\hat{\omega} J_l l_0(x) \end{bmatrix}$$

with $F'_{1} = x \frac{x^{2} - 1}{\hat{\omega}} I_{1}(x) + \hat{\omega} J_{g} I_{0}(x)$

Appendix: Contribution maps for collar formation

V

thin film ($\epsilon = 0.1$) - **a-c** : 100 ms - **d-f** : 300 ms

- Inertia plays no role neither on the formation nor on the motion of collars.
- A lubrication approach is enough to describe thin film evolution.

Appendix: imposed air flow

Permanent regime:

$$egin{aligned} Q_g &= 0.8\,{
m cm}^3,\ Q_l &= 0.4\,{
m mm}^3,\ \epsilon &= h_0/R_0 = 0.06 \end{aligned}$$

- Obtention of a permanent regime.
- Same flow rates and boundary conditions, but distinct initial conditions
 - \rightarrow the same regime is observed.