

GDR TransInter – journées d'Aussois 2025

Etude expérimentale de la dynamique d'écoulements diphasiques eau/air au sein d'un canal de taille millimétrique

Jimmy Martin (CEA/DES/IRESNE/DTN/STCP/LTHC)

Yann Kervegant, Romuald Mallet, Sylvain Chareyre (CEA/DES/IRESNE/DTN/STCP/LETH)

Aussois, 11 juin 2025

A trend towards the miniaturization of nuclear systems in a context of nuclear energy revival

Applications such as **SMRs** or **nuclear fusion**

- R&D on compact steam generators for fission (CSG) or fusion reactors (studies carried out as part of the DEMO development
- Technical challenges:
 - Maximize steam production while minimizing the component's footprint
 - Limit fouling of the component's walls
- High pressure, high temperature, and substantial flowrates are required to sustain **steam/water** two-phase flow conditions and maximize the efficiency thermodynamic of steam generation
 - → Those strong constraints make the **millimetric scale** the **most appropriate**

Space nuclear applications

- Ongoing studies in France and abroad on concepts of nuclear reactors embedded for space exploration
- A CEA/CNES roadmap currently being drafted

Applications of the **nuclear fuel cycle**

- Ongoing R&D at CEA/ISEC in collaboration with a separation chemistry industry partner
- Liquid-liquid two-phase flows, millimeter-scale imposed by flow rate requirements / efficiency of chemical separation

An important length scale: the **capillary length**

 $\kappa^{-1} = \sqrt{\frac{\gamma}{g \,\Delta\rho}}$

with γ , the gas/liquid surface tension, g, the gravitational acceleration, $\Delta\rho$, the liquid-to-gas density difference

- $\kappa^{-1} = 2.7 \ mm$ for pure water at 20°C
- Capillary effects are significant and gravity forces are less dominant if hydraulic diameter or smallest channel transverse length < κ^{-1}

→ This remains true for water up to temperatures of 350° C (*i.e.* very close to the critical point): it largely encompasses the thermohydraulic operating conditions of a pressurized water nuclear reactor

Capillary length vs. temperature for pure water

An important dimensionless quantity: the **capillary number**

$$Ca = \frac{\mu V}{\gamma}$$

with γ , the gas/liquid surface tension, V , a characteristic velocity, μ , the liquid dynamic viscosity

 In the case of wetting surfaces with capillary numbers Ca < 1, the presence of a triple line at the fluid-fluidsolid interface is possible

Illustration of a water/Isane184 liquid/liquid two-phase flow within a PTFE channel of an inner diameter of 750 µm (courtesy of F. Lamadie, CEA/ISEC)

Non-equilibrium force F exerted on the triple line, with θ_E the socalled static contact angle and θ_D the dynamic contact angle

Variations of the dynamic contact angle θ_D as a function of the capillary number for several oils in a glass channel (Hoffmann, 1975)

- The wall roughness strongly matters!
 - The wall friction impacts the laminar/turbulent regime transition in an unusual way
 - Millimetric-scale channels are prone to fouling, leading to significant variations in wall roughness over time (e.g. +50µm magnetite deposit after about 2 months at 60 bar / 300°C in a titanium cylindrical channel with an inner diameter of 1.4 mm during a CEA IRESNE test)

SEM image of a cross-section of the titanium mini-channel and its magnetite deposit after a fouling test at CEA IRESNE

<u>Source</u>: S.G. Kandlikar *et al.* (2014). "Heat Transfer and Fluid Flow in Minichannels and Microchannels – Second Edition", Butterworth-Heinemann Elsevier

- The wall roughness strongly matters!
 - The wall friction impacts the wettability properties of the channel and hence the triple line dynamics
 - Wenzel's law: rough surfaces tend to exaggerate the intrinsic wetting characteristics of a material, making hydrophilic surfaces more hydrophilic and hydrophobic surfaces more hydrophobic

 $\cos \theta^* = r \times \cos \theta_E$

with θ_E the static contact angle of a smooth solid surface, θ^* the static contact angle of its rough counterpart, r the ratio between the actual surface area and the projected (or apparent) surface area

- For very rough surfaces, **air trapping** is likely to occur and can affect surface wettability
- On rough surfaces, microscopic defects and asperities can pin the triple contact line, hindering its motion

Variations of the static contact angle θ^* of a rough solid surface as a function of a roughness estimator r

Challenges and limitations from an operational perspective

- Due to the complex physical effects discussed earlier, current models for two-phase pressure drop remain difficult to establish in the specific case of mini-channel applications and still involve significant uncertainties
- Two-phase pressure drop models are not yet mature enough for applications in mini-channels, highlighting the need for experimental data to support their development and validation (purpose of this first study)

The BICHE test device allows experiments for better understanding the heat and mass transfers in millimetric-scale channels

Overview of BICHE analytical test bench

- BICHE: an analytical loop for investigating the pressure losses and two-phase flow regimes, focusing on minichannel flow dynamics
- Loop design:
 - Two independent hydraulic circuits with volumetric pumps (0.5–200 g/s, 1–10 bar discharge pressures)
 - Water supply from OLYMPE tank (demineralized, nondegassed)
 - Heating system in OLYMPE to set feedwater temperature up to 80°C (35 kW max)
 - Compressed air injection (0-3 g/s) for each circuit
- Instrumentation:
 - Pressure and temperature at the inlet/outlet
 - Mass flow rate at the inlet for each phase
 - Void fraction and bubble velocity using optical sensors

J. Martin, R. Mallet, Y. Kervegant, S. Chareyre, "A characterization of the two-phase frictional pressure drop within a cylindrical mini-channel in the laminar and turbulent regimes," *21st International Topical Meeting on Nuclear Reactor Thermal Hydraulics*, Busan, Korea (2025)

The BICHE test device allows experiments for better understanding the heat and mass transfers in millimetric-scale channels

Tested mini-channels and instrumentation

- For this experimental study, two cylindrical mini-tubes made of titanium alloy were used: the first with a length
 of 2.3 m and the second 3.2 m. Both have a hydraulic diameter of 1.38 mm and an outer diameter of 2 mm
- The tubes were placed horizontally (no significant two-phase stratification expected)
- Prior to testing, the internal surface condition of these mini-tubes was characterized using a scanning electron microscope

Scanning electron microscope images of the internal surface state of a mini-tube made of titanium alloy used in the BICHE device

Measurement	Sensor	Range	Precision (k=2)
Channels No.1-2 inlet liquid mass flow rate	Coriolis flow meter, Elite series (MICROMOTION)	0 – 200 g/s	±0.1 % measurement
Injected air mass flow rate	Coriolis flow meter, Elite series (MICROMOTION)	0 – 5 g/s	±0.1 % measurement
Inlet/outlet temperature	Pt-100 1/10e DIN probe	0 – 100°C	±0.15 K
Inlet/outlet pressure	Pressure transducer EMERSON 3051	0 – 10 bar	±0.2 % measurement

Instrumentation of BICHE experimental setup

An experimental study of the pressure losses in a smooth millimetric-sized channel made of titanium

A prior estimate of the single-phase pressure drop

- Before analyzing pressure drops in a two-phase configuration, the single-phase liquid pressure drops were first characterized for the studied mini-channels
- A total of 100 tests were conducted (52 for channel No.1, 48 for channel No.2), with liquid mass flow rates ranging from 0.5 to 9 g/s and inlet liquid temperatures between 15 and 75°C, yielding liquid Reynolds numbers *Re* between 400 and 21,000
- Data reduction through the form of a regular friction factor f and a liquid Reynolds number Re

- Results in agreement with the literature (*i.e.* no shift in the critical Reynolds number)
- The following friction laws were obtained:

$$f = \frac{64}{Re}$$
 for $Re \leq 2300$

$$f = \frac{0.261}{Re^{0.25}}$$
 for 2300 $\leq Re < 21,000$

Where one can recognize a Blasius-type law corresponding to the so-called turbulent smooth regime

Results and discussion for an air/water two-phase flow

- For investigating the two-phase frictional pressure drop at the scale of a mini-channel, a total of 82 tests were conducted (53 for channel No.1, 29 for channel No.2)
 - Liquid mass flow rates ranging from 0.7 to 4.8 g/s
 - Gas mass flow rates between 0.01 and 0.14 g/s.
 - The experiments were performed at an inlet liquid temperature of approximately 20°C (*i.e.* to avoid any gas solubility effect)
- Liquid Reynolds numbers between 500 and 4,000 and gas Reynolds numbers ranged from 600 to 8,000
- A comparison of experimental data with four different two-phase pressure drop models among the most recommended for mini-channels was carried out

Results and discussion for an air/water two-phase flow

Among the tested models, the Sun and Mishima model (2009) best predicts the experimental data, in agreement with the recommendations of the literature

<u>Source</u>: Y. Xu *et al.* (2012). "Evaluation of frictional pressure drop correlations for two-phase flow in pipes", Nuclear Engineering and Design, Vol. 253, pp. 86-97

 Mean relative deviations between predictions and experimental results obtained for each model:

	Friedel	Müller-Steinhagen &	English &	Sun & Mishima
	(1979)	Heck (1986)	Kandlikar (2005)	(2009)
Mean relative deviation	-26%	-75%	+40%	+3%

... but what happens in the case of a rough channel surface? This issue is left as a direction for future research...

Seeking a power law to reduce further the scatter in experimental ^{*} data

- In order to reduce the obtained data, two well-known quantities are computed:
 - The dimensionless pressure drop Φ_L^2
 - The so-called Martinelli parameter X^2
- Those quantities read:

$$\Phi_L^2 = \frac{\Delta P_{fric}}{\left(\Delta P_{fric}\right)_L} \qquad \qquad X^2 = \frac{\left(\Delta P_{fric}\right)_L}{\left(\Delta P_{fric}\right)_G}$$

where one assumes $\Delta P_{fric} \approx \Delta P$, the measured pressure difference in the two-phase case and with $(\Delta P_{fric})_L$ and $(\Delta P_{fric})_G$, respectively the pressure drop of the liquid and gas phases alone, whose value is computed on the basis of the prior estimate of the channel's friction laws in the single-phase regime

Seeking a power law to reduce further the scatter in experimental data

• A power law relating Φ_L^2 to X^2 fits the experimental data well!

 $\Phi_L^2 = 10.511 \ X^{-0.756}$

with a regression coefficient $R^2 = 0.94$, a pre-factor equal to 10.511 ± 0.520 (k = 2) and an exponent equal to -0.756 ± 0.055 (k = 2)

Some conclusions

- This experimental study characterized the frictional pressure drop in two-phase flow within cylindrical minismooth channels of millimeter-scale diameter, made of titanium
- The results demonstrate that the most recommended correlation to data in the field, namely the Sun and Mishima model (2009), accurately reproduce the experimental data, with a limited mean relative deviation between predictions and empirical results of +3%
- The tests covered a wide range of Reynolds numbers for both liquid and gas phases, revealing a clear trend in the relationship between the well-known dimensionless pressure drop Φ_L^2 and the Martinelli parameter X^2
- A power law relating Φ_L^2 to X^2 has been derived from the achieved tests and further reduces the scatter in experimental data
- The strong repeatability of the results reinforces their reliability and confirms that channel length has no significant influence on the observed trends (*i.e.* no unwanted "entrance effect")

What's next?

- Submission of an ANR PRC project proposal in fall 2025 in order to go beyond those first results and better understand the various roughness effects on the two-phase flow dynamics at millimetric scale
- Additional experiments will be conducted, with wide variations in:
 - The used couples of flowing fluids (e.g. air/water, organic fluid/water, etc.)
 - The material of the channel walls (*i.e.* for changing significantly the static contact angle of the channel surface)
 - The roughness of the channel walls (*i.e.* by means of controlled substrate deposits)
- Modeling activities will be conducted using both CMFD and LBM frameworks, with upscaling efforts aimed at deriving macroscopic models for two-phase pressure drops

Thank you for your attention

CEA CADARACHE DES/IRESNE/DTN/STCP/LTHC

13115 Saint-Paul-lez-Durance, France

jimmy.martin@cea.fr

+ 33 4 42 25 63 96