

Spray behavior from non-swirling to swirling gas jet in coaxial atomization

Nathanaël Machicoane¹ and Santanu K. Sahoo¹

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France

Gas-assisted Atomization Phenomena

Near field

0 ms

Interface destabilized by surface tension

Rayleigh–Plateau instability

<u>Accelerated</u> interface (transverse to shear)

Rayleigh–Taylor instability

air

Aero-driven

Interface aligned with <u>shear</u>

Kelvin–Helmholtz instability

Gravity-driven

0

0

8

0

O

$$We = \frac{\text{gas} - \text{induced stresses}}{\text{surface tension}}$$

 $We = \frac{\rho_g U_g^2 D}{\sigma}$

Pilch and Erdman, IJMF 1987

P. Marmottant and E. Villermaux, JFM 2004

Atomization Regimes

Experimental set-up

Spray characterization

 v_x, v_r, v_{θ}, d

 $x = 25d_a$

Gas jet radial profiles

- Broadening of radial profile with SR
- Properties of the swirled annular jet are those of a round turbulent jet

Mean droplet slip velocity

Local droplet size distributions and radial profiles

- Spatial rearrangement of the droplet
 - <u>Local</u> reduction of mean droplet size at low Re_l and high We_g (high M)

Swirl addition \rightarrow

Droplet size statistics – integrated over a transverse plane

 $\sum_{i=1}^{n} N_{i} A_{i}$

 $d_{nm} = \left(\frac{\sum p_i d_i^n}{\sum p_i d_i^m}\right)^{1/(n-m)}$

Swirl reduces the drop size beyond $M\left(=\frac{\rho_g U_g^2}{\rho_l U_l^2}\right) \approx 50$ All size class

Nathanaël Machicoane – GdR TransInter Phase II – June 10 - 12, 2025

Radial profiles of axial flux

-0.5

 y/d_l

0.5

: 0)

- Axial fluxes show centered maxima for high We_g and
- \rightarrow Low *M*: strong flapping with long liquid jet, brings n

Conclusions & regime map

Swirl in the gas flow leads to

atomization

•

- \rightarrow Retainment of self-similarity of the gas jet but with different shape factor
- \rightarrow Prominent effect when $SR \ge 0.6$, with classical broadening of the spray (e. g., \dot{g}_x radial profiles in addition to u_x)
- \rightarrow For M > 46, decrease of drop size everywhere & every size class

SR 10^{-1} **---** 0.6 $r_{0.5}^{u_x}$ 0.28.0 0.2 O.8 0.4F.d.f. 0.0 $\frac{1}{100}$ 0.4 0.2

40

 $d(\mu m)$

60

20

 10^{-6}

 $Re_l = 1120, We_q = 830$

100

0

80

0.5

SR

 $r/r_{0.5}^{g_x}$

Thank you for your attention

Mean droplet slip velocity

